Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37197983

RESUMO

Single-cell sequencing (sc-seq) provides a species agnostic tool to study cellular processes. However, these technologies are expensive and require sufficient cell quantities and biological replicates to avoid artifactual results. An option to address these problems is pooling cells from multiple individuals into one sc-seq library. In humans, genotype-based computational separation (i.e., demultiplexing) of pooled sc-seq samples is common. This approach would be instrumental for studying non-isogenic model organisms. We set out to determine whether genotype-based demultiplexing could be more broadly applied among species ranging from zebrafish to non-human primates. Using such non-isogenic species, we benchmark genotype-based demultiplexing of pooled sc-seq datasets against various ground truths. We demonstrate that genotype-based demultiplexing of pooled sc-seq samples can be used with confidence in several non-isogenic model organisms and uncover limitations of this method. Importantly, the only genomic resource required for this approach is sc-seq data and a de novo transcriptome. The incorporation of pooling into sc-seq study designs will decrease cost while simultaneously increasing the reproducibility and experimental options in non-isogenic model organisms.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Humanos , Reprodutibilidade dos Testes , Peixe-Zebra/genética , Genômica/métodos , Análise de Sequência de RNA/métodos
2.
Nat Commun ; 13(1): 6949, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376278

RESUMO

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.


Assuntos
Osteogênese , Urodelos , Animais , Osso e Ossos , Cartilagem , Divisão Celular , Mamíferos
3.
Science ; 377(6610): eabp9186, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048957

RESUMO

The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.


Assuntos
Evolução Biológica , Neurônios , Pleurodeles , Telencéfalo , Animais , Atlas como Assunto , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios/metabolismo , Pleurodeles/fisiologia , Telencéfalo/citologia , Telencéfalo/fisiologia , Transcriptoma
4.
Nat Cell Biol ; 24(5): 645-658, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550612

RESUMO

The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.


Assuntos
Junções Íntimas , Urodelos , Animais , Mamíferos , Miocárdio , Miócitos Cardíacos/patologia , Pericárdio/patologia , Pericárdio/fisiologia , Urodelos/genética
5.
Cell Mol Life Sci ; 78(16): 6033-6049, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34274976

RESUMO

Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.


Assuntos
Encéfalo/fisiologia , Orelha Interna/fisiologia , Coração/fisiologia , Meninges/fisiologia , Sistema Nervoso/fisiopatologia , Células de Schwann/fisiologia , Anfíbios/metabolismo , Anfíbios/fisiologia , Animais , Encéfalo/metabolismo , Linhagem da Célula/fisiologia , Orelha Interna/metabolismo , Desenvolvimento Embrionário/fisiologia , Feminino , Peixes/metabolismo , Peixes/fisiologia , Melanócitos/metabolismo , Melanócitos/fisiologia , Meninges/metabolismo , Camundongos , Sistema Nervoso/metabolismo , Gravidez , Receptor de Endotelina B/metabolismo , Células de Schwann/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...